
J. Mol. Model. 1995, 1, 11 – 17

Introduction

Functions of many variables that are continuously differen-
tiable at least twice represent the central conceptual qualita-
tive as well as quantitative entities of many physical and
chemical theories. Generally, the most important points of
the functions proposed by theories in chemical physics are
their stationary points (e.g., minima, maxima and saddle
points). Due to this fact theoreticians need methods for lo-
cating stationary points. Using the basic idea of conjugate
gradients [1], efficient algorithms for the minimization of
quadratic and nonquadratic functions have been proposed.
First, we present the theoretical basis and the standard im-
plementation of these algorithms.

Let us consider an arbitrary real-valued continuous func-
tion f(x) on an open set S possessing at least continuous
first- and second-order partial derivatives on S. At each point
x on S we have the Taylor expansion formula

( ) ( ) ( )f q *x p x p p R x p p+ = + + +1

2
(1)

where q(x+p) is the quadratic function approximation

( ) ( ) ( ) ( )q f g H* *x p x p x p x p+ = + + 1
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of f(x+p) on a neighborhood of x. The vector g(x) and the
matrix H(x) are the gradient and Hessian of f at x respec-
tively. The remaining term has the feature
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Abstract

An algorithm is presented for the optimization of molecular geometries and general nonquadratic functions
using the nonlinear conjugate gradient method with a restricted step and a restart procedure. The algorithm only
requires the evaluation of the energy function and its gradient and less memory storage is needed than for other
conjugate gradient algorithms. Some numerical results are also presented and the efficiency and behaviour of
the algorithm is compared with the standard conjugate gradient method. On the other hand we present compari-
sons of both conjugate gradient and variable metric methods with and without the trust region technique. One of
the main conclusions of the present work is that a trust region always improves the convergence of an optimitzation
method. A sketch of the algorithm is also given.
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method was extended by Fischer and Karplus [8], who in-
troduced the so called conjugate peak refinement.

Others methods for the optimization of nonquadratic func-
tions include the variable metric algorithms [2]. This type
of method can be seen as an extension of the preconditioned
conjugate gradients technique [1, 9]. From the computational
point of view the variable metric algorithms are much more
efficient than the conjugate gradient one for both quadratic
and nonquadratic functions. One of the problems with this
class of algorithms is the computer memory storage that it is
needed when the function depends of many variables. An
attempt to reduce the computer memory was given by
Buckley [10] making a combination of conjugate gradient
and variable metric algorithms.

In this paper we propose an improved conjugate gradi-
ent technique using both the trust region technique [2], and
Powell’s restart procedure [1, 14]. We will compare the nu-
merical results obtained using the proposed modifications
with the standard conjugate gradient algorithm and variable
metric methods.

Methodological outline
The modified conjugate gradient method

Writing equation (1) in the following way

( ) ( ) ( ) ( ) ( )[ ]f f g H* *x p x p x p x x p p+ = + + + +1

2
R (7)

we observe that its structure is very close to the quadratic
function defined in equation (2), i.e., f(x+p) Å q(x+p) if x+p
is near to x. This observation suggests a change in the pre-
ceding algorithm in order to make it more efficient [1]. First,
we define a vector, say v

k
, as

( ) ( )[ ]v x x p pk k k k k= + +H R (8)

Taking into account the result of equation (3), the numerical
computation of equation (8) is given in the following way
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where ε
k
 is computed according the formula

( )ε δk k kx x= +
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(10)

The property of equation (3) is the basis of the Newton
and conjugate gradient methods since in the neighborhood of
a non degenerate stationary point a function behaves like a
quadratic function. In others words, the applicability of these
methods is based on the principle that an effective algorithm
for optimizing a quadratic function q(x+p) can be modified
so as to obtain an effective algorithm for optimizing a
nonquadratic function f(x+p) [1].

If we are interested in locating a stationary point of the
minimum class, starting at an appropriate initial point x the
general standard method proceeds as follows [1, 2]:

1. Construct the approximate quadratic function q(x+p) of
f(x+p).
2. Use the conjugate gradient technique to locate the mini-
mum point of q(x+p). This can be done in the following
way:

a) Minimize the quadratic function q(x+p) along the
line x

k+1
 = x

k
 + α

k
p

k
 starting with p

1
 = 0 and x

1
 = x.

b) Compute the next direction p
k+1

 using the formulae

( )p q x b pk k k k+ += − +1 1' (5)

and
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where q’(x) is the gradient of q at the point x.
Stop at the k step if q’(x

k+1
) = 0.

3. Replace x by x
k+1

 and stop if g(x
k+1

)*g(x
k+1

) is small and
x

k+1
 is an approximation to the minimum of f, otherwise

repeat steps (1) and (2).

The algorithm outlined above was reported by first time
by Fletcher and Reeves [3]. Basically Fletcher’s algorithm
differs from the traditional conjugate gradient method applied
to quadratic functions [4, 5] in the explicit minimization of
the function along the conjugate descent direction. For
nonquadratic functions with many variables this procedure is
quite expensive because it normally requires a cubic interpo-
lation in the line search. The origin of the formulas (5) and
(6) can be seen as the natural way to build a set of linear
independent vectors, say {pi}, from the set of the gradient
vectors {q’(x

k
)}, such that they are H(x) conjugate, e.g.

pk*H(x)p
k+1

 = 0 [1]. These formulae are exact in the strictly
quadratic case.

Sinclair and Fletcher [6] showed that the conjugate gradi-
ent technique is still quite efficient in the localization of first
order saddle points of nonquadratic functions. In this case one
needs the explicit definition of the direction along which the
function is maximized and the rest of conjugate basis is built
recursively according to Beale’s formula [7]. Recently this
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and where δ is the machine precision [11]. Near to conver-
gence, equation (9) presents numerical problems and should
be substituted by the central difference formula, e.g.

(11)
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Second, rather than using the gradient of q, q’(x
k+1

), we force
at the end of line search that q’(x

k+1
) = g(x

k+1
). This implies

both that the gradient is not orthogonal to the previous di-
rection p

k
 and non-orthogonality between g(x

k+1
) and g(x

k
).

In order to minimise these deficiencies locally for
nonquadratic functions, we use the trust region technique
[2], that has been applied successfully in methods based on
the variable metric method [12,13] and the restart procedure
recommended by Powell [14]. Briefly the trust region tech-
nique consists in modifying the step length in order to main-
tain the ratio
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close to one at the stationary point of q(x
k
+ α
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). The way

to do this consists of modifying of the current diagonal ele-
ment of [H(x

k
) + R(x
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+p
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)] in the representation of the present

conjugate direction. This is the same as that in the
minimization of the next restricted quadratic function qk
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In this expression R
k
 is the so called trust radius and ν

k
 is

the Lagrangian multiplier. We see that qk
r
 is only a

Lagrangian function of α
k
 and ν

k
. The optimum value of α

k

is
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We recall that when the restricted step is not used the op-
timum value of αk is [1]

( )
α k k

k k

k k

a
p x

v p

opt = = −
*

*

g
(16)

Let us assume that xk+1 is a point of q such that the ratio
defined by equation (12) at this point is close to one, then we
can write

( ) ( )q fx a p x a pk k k k k k+ ≈ + (17)

In this situation we have two cases:
Case a) If xk+1 = xk + αkpk is a stationary point of q, then

( ) ( )0 = + ≈ +p x a p p x a pk k k k k k k k
* *q' g (18)

so g(xk+1) and q’(xk+1) are orthogonal to pk. Imposing the
conjugate condition between pk and pk+1 it follows that

( ) ( )[ ]p x x p pk k k k k
* H R+ + =+1 0 (19)

Substituting equations (5) and (8) into equation (19) and
replacing q’(x

k+1
) by g(x

k+1
) we get

( )− + =+v x b v pk x k k k
* *g 1 0 (20)

and the formula for the scalar b
k
 is now
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b
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Case b) x
k+1

 is not a stationary point of q. In this situation
the restricted quadratic model equation (13) has been used,
also p

k
*g(x

k+1
) ≠ 0 and g(x

k+1
)*g(x

k
) ≠ 0. We redefine the vec-

tor v
k
 to be the vector
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where ak is evaluated according to equation (14). The for-
mula for the scalar b

k
 is now

(23)

( ) ( ) ( ) ( )
b

x a p x a p x a p x

a v p
k

k k k k k k k k k k

k k k

=
+ + − +g g g g
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This is the Polak and Ribiere equation [15]. We observe
that equation (23) is reduced to equation (21) when
g(x

k+1
)*g(x

k
) = 0.

With the latter considerations the algorithm now is:
1. Select x

1
, f(x

1
), g(x

1
), p

1
 = –g(x

1
) and R

1
. Set k = 1 and

j = 1.
2. Compute v

k
 using either equations (9) or (11) and the

scalar a
k
 by the equation (16).

3. If a
k
(p

k
*p

k
)1/2 > R

k
 then compute a

k
 according to equa-

tion (14).
4. Compute f(x

k
 + a

k
p

k
) and the ratio using equation (12).

If ratio < r
l
, then R

k+1
 = R

k
 / Sf.

If ratio > r
u
 and a

k
(p

k
*p

k
)1/2 = R

k
, then R

k+1
 = R

k
Sf, where

Sf is  a scaling factor.
Otherwise R

k+1
 = R

k
.

If ratio ≤ 0, then using the new R
k+1

 set k = k + 1, x
k+1

 = x
k

and go to 3
else, update x

k+1
 = x

k
 + a

k
 p

k
 and compute g(x

k+1
).

5. Check the convergence criteria:
((g(x

k+1
)*g(x

k+1
))/n)1/2 ≤ ε

1
 and |f(x

k+1
) - f(x

k
)| ≤ ε

2
, where n

is the number of variables. If it is satisfied stop and x
k+1

 is
an approximation to the minimum of f.
6. Compute the new direction p

k+1
. For k = 1 compute p

2

using equation (5).
If k ≥ 2 then test the inequality
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if it holds or k – j ≥ n set j = k – 1.
If k > j + 1  then compute p

k+1
 using Beale’s formula [7]

( )p x c p b pk k k
j

j k k+ += − + +1 1g (25)

The scalar b
k
 is evaluated using equation (23). On the other

hand, the scalar c
k
j is
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Test that the direction p
k+1

 is sufficiently downhill by
using the inequalities

( )
( ) ( )

ρ ρl
k k

k k

u

p x

x x
≤ − ≤+ +

+ +

1 1

1 1

*

*

g

g g
(27)

if they are not satisfied set j = k –1 and redefine p
k+1

using equation (5).
Else evaluate pk+1 using expression (5).
7. If k = 1 or j = k – 1, store p

j
 = p

k
, g

j
 = g(x

k
) and g

j+1
 =

g(x
k+1

).
Set k = k + 1 and go to 2.

We remember that using equation (5) the scalar bk is
evaluated by the expression (23). All the parameters are ar-
bitrary and the algorithm is quite insensitive to their change.
Suggested values are r

l
 = 0.25, r

u
 = 0.75, Sf = 2.0, s = 0.2,

r
l
 = 0.8, r

u
 = 1.2 and R

1
 = 0.1. Step 7 is the restart procedure

proposed by Powell [14]. Finally, it should be noted that the
memory storage required by this algorithm is six vectors.

Fig. 1 Optimized structures contained in this study
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Some numerical results and conclusions.

In order to test the behaviour and performance of the method,
the above algorithm has been implemented in the
semiempirical program package MOPAC [16]. All molecu-
lar geometry optimizations were carried out with the AM1
semiempirical self consistent field (SCF) Hamiltonian [17].
The appropriate wave function, (e.g., RHF or UHF) was taken
in each case. The convergence criteria were
ε

1
= 3x10-2 kcal mol–1Å–1 and ε

2
 = 5x10–5 kcal mol–1, which

are the units used in MOPAC, and the maximum number of
iterations allowed was 100. The results are presented in Ta-
ble I and the corresponding optimized structures in Figure 1.
In the first example the application of the conjugate gradi-
ent algorithm whitout restricted step led to a molecular ge-
ometry in which the SCF method does not converge. This
feature never can occur when the trust region technique is
used because the geometrical changes are small from itera-
tion to iteration. The last example presented in the Table I,
the non convergence of the standard conjugate gradient al-
gorithm is due to maximum number of iterations. In the col-

umn three, last row, we give the value of function difference,
f(x

100
) - f(x

101
) = 7x10–4 kcal/mol, reached after 100 iterations

for the example VI. The convergence is achieved at the 140th
iteration. This large number of iterations is due to the flatness
of the hypersurface near the minimum. When this occurs, the
denominator of equation (16) is small because it represents
the curvature of the hypersurface and, consequently, α

k
opt is

big, producing important changes in the molecular geometry
even near  convergence. In the present case the denominator
of equation (16) was around 20 in almost all the iterations, in
normal cases the denominator takes values larger than 200.
Using the restricted step technique, the effect of the flat
hypersurface is corrected at each iteration [2, 13], since the
a

k
opt does not depend of the curvature (see equation (14)). On

the other hand, in the proposed algorithm, the conjugate di-
rection is tested at each iteration in order to check that it is
downhill enough. The two important points just mentioned
are lacking in the standard conjugate gradient and explain the
large difference in the number of iterations encountered in
example VI. In examples II and III, both the standard conju-
gate gradient and the new proposed conjugate gradient algo-
rithm are equally  efficient.

Comparing the number of function evaluations (SCF en-
ergy calculations) required for both types of methods, e.g.
variable metric and conjugate gradient methods, we note that
this number is always much smaller when the trust region is

used. In the case of variable metric method, the large differ-
ence is because no trust region is used and an exact line search
minimization is employed. This fact shows numerically the
lower efficiency of exact line search as pointed out by Fletcher
[2].

Table II shows the behaviour of the conjugate gradient
method proposed in this paper for example I. First of all, we
see that the restricted step only applies to the first iterations.
This fact avoids big changes in the geometry and helps the

Table 1. Comparison between conjugate gradient and va-
riable metric methods with and without the trust region
technique.

a) Conjugate gradient.
b) Conjugate gradient with a trust region and Powell’s restart
procedure. (See ref. 14)
c) Variable metric method with exact line search.
d) Variable metric method with a trust region. (See ref. 12)
e) Structures, see Figure 1.
f) Number of variables.
g) Number of iterations.
h) Number of SCF energy evaluations.

C.G. [a] C.G.T.R. [b] V.M. [c] V.M.T.R. [d]

str. [e] n.v. [f] n.i. [g] n.f. [h] n.i. [g] n.f. [h] n.i. [g] n.f. [h] n.i. [g] n.f. [h]

1 8 - - 20 64 13 61 16 24

2 20 19 57 19 59 15 66 12 32

3 21 12 36 13 40 14 62 8 31

4 26 39 117 24 74 32 139 8 34

5 26 47 141 34 104 15 71 9 35

6 33 7x10E-4 300 79 241 49 228 39 74
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algorithm to obtain the correct convergence. Second, the col-
umn four gives the values of inequality (24). According to the
proposed algorithm in the previous section, when the value of
the inequality is lower than 0.2 then Powell’s restart [14] pro-
cedure is applied. This occurs at iterations 7, 10, 12 and from
iteration 14 to the end of the process. In column five we present
the values of inequality (27). When this inequality is between
1.2 and 0.8, we consider that the conjugate direction obtained
from Beale’s formula [7] [eq. (25)] is downhill enough. Nor-
mally, we see that this occurs in the quadratic region, e.g. in
the last iterations of the process.

The important effect of the use of Beale’s formula [7] in
the last steps of the convergence process can be seen in exam-
ple VI. The present method needs 79 iterations to reach con-
vergence, whereas using the standard conjugate gradient more

1 230.40 -30.36106 - - on

2 179.54 -3.27264 0.676 - on

3 216.03 -0.13212 1.082 - off

4 199.23 -3.46169 1.551 - on

5 126.27 -0.17191 1.123 - off

6 111.29 -2.88722 0.472 - off

7 62.86 -3.32058 0.068 0.95 off

8 70.99 -3.24341 1.739 - on

9 35.39 -0.11825 1.328 - off

10 18.19 -1.65821 0.027 0.91 off

11 21.90 -0.94633 1.743 - off

12 5.41 -0.00866 0.039 0.95 off

13 5.31 -0.02707 0.382 - off

14 2.20 -0.01235 0.004 1.00 off

15 2.50 -0.00138 0.003 0.99 off

16 1.41 -0.00451 0.012 0.98 off

17 0.85 -0.00263 0.062 1.03 off

18 0.39 -0.00003 0.126 0.95 off

19 0.22 -0.00015 0.382 - off

20 0.05 -0.00001 0.003 1.00 off

than one hundred iterations are needed to reach the conver-
gence.

From the presented results, it can be concluded that in
both methods, conjugate gradient and variable metric, the
trust region technique improves the efficiency of the algo-
rithms. Furthermore, the restart procedure used in the con-
jugate gradient augment the efficiency in the last steps of
the process and situations where the hypersurface is flat near
the minimum.

Recently an optimization technique  the so called trun-
cated Newton minimizer [18] has been described, that can
be seen as an intermediate between conjugate gradient and
variable metric methods. Since this new technique combines
the best of both methods and variable metric method is al-
ways superior to conjugate gradient, we conclude that for

Iter. k [a] ||g(x
k
)|| [b] ∆Ε∆Ε∆Ε∆Ε∆Ε [c] Ineq.(24) [d] Ineq.(27) [e] r.s. [f] Table 2. Behaviour of the conjugate

gradient method with a trust region and
restart proceudre for the example 1 of
Table 1.

a) Iteration number.
b) Gradient norm (g (x

k
)* g (x

k
)/n)1/2 in

kcal mol–1 Å–1 , n is the number of varia-
bles
c) Energy difference of f(x

k+1
) – f(x

k
) in

kcal mol–1.
d) Inequality of equation (24).
e) Inequality of equation (27).
f) Restricted step.
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large problems, say thousands of variables, the truncated
Newton minimizer should be superior to the technique pre-
sented in this paper.

I am indebted to Prof. S. Olivella for his suggestions.
The research was supported by the Spanish DGICYT (Grant
PB92-0796-C02-01).
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